塑造具有热明显弹性和可塑性的内存聚合物网络
具有复杂但可控的变形行为的刺激响应材料对于真实设备应用来说是非常可取的。在各种变形材料中,形状记忆聚合物的弹性特性允许固定临时形状,这些形状可以按需恢复,而具有可交换键的聚合物可以通过可塑性进行永久形状更改。我们将弹性和可塑性集成到单个聚合物网络中。合理的分子设计允许在不同的温度范围内实现这两种相反的行为,而没有任何重叠。通过探索可塑性的累积性,我们展示了对高度复杂的形状的简单操作,否则这些形状极具挑战性。动态变形行为为制造几何复杂的多功能设备铺平了道路。
因应环境变化而改变形状在自然界中司空见惯。它的多样性和相关功能对自然的生存至关重要(1)。具有类似智能的刺激性变形聚合物由于其巨大的技术潜力(1)而备受关注。特别是,发现更多样化的变形行为,匹配甚至超过自然系统的复杂性的驱动器似乎是一个永无止境的任务(2-7)。形状记忆聚合物 (SMP) 是此类聚合物的独特类别,外部编程的形状可以暂时固定,然后按需恢复(8-10)。在若干技术领域,包括可部署结构(例如生物医学和航空航天)(11)和功能可调设备(12、13)中实现其巨大的实用潜力,激发了人们对这一领域的强烈兴趣。最近发现的三形(14)、多形状(15、16)和可逆形状记忆(17)超越了经典的双形行为,重塑了这一领域的景观,然而所有形状记忆行为在聚合物弹性方面有着共同的根基,其基础是通过链条构象变化(8-10)储存和释放能量。一种相反的行为——聚合物可塑性,指在不进行宏观熔化的情况下永久重塑聚合物——最近引起了人们的注意(18-26)。从机械上讲,这是通过聚合物网络中的共价债券交换实现的,允许其地形根据外部力量进行重新排列。即形状变化不伴有链形构象(或熵)变化,因此是永久性的(即不可恢复的)。这种特殊的特性与众所周知的热塑性聚合物在其流体状态(即塑料流)的后处理有根本的不同,因为永久性重塑可能发生,而材料则保持其动态交联状态。这种差异已被证明相当有益,因为它导致一系列令人兴奋的新的可能性,包括热细胞聚合物的可塑性(21-25),弹性体的机械模式(19),和液晶弹性体的机械方向(26).
而基于弹性的形状记忆行为允许在许多形状(重新编程)周期(即非累积)中擦除以前的形状,而聚合物可塑性是累积的(19,20),指的是通过可塑性永久重塑聚合物可以重复完成,而不会丢失以前的应变历史,与基于弹性的形状记忆效果相反。可塑性可通过热(20-26)或光照射(18、19、27)触发。 虽然光诱导的可塑性有其优点(例如,选择性),但它有内在的缺点,特别是需要视线访问和有限的光渗透深度,这两者都禁止将其用于三维(3D)散装系统。此外,依赖消耗品启动器来触发光诱导的可塑性不允许许多形状操作周期。在没有可塑性的累积效应的情况下,具有可塑性的 SMP 网络尽管具有机械性的独特性,但从实际形状操作的角度来看,与热塑性 SMP 并无不同,因为后者的永久形状也可以重新定义,但以前的形状将被完全擦除。
光诱导可塑性的局限性在很大程度上不适合热触发系统。考虑到这一点和其他考虑,我们着手设计一个具有热明显弹性和可塑性的 SMP 网络,特别注意为后者实现累积效果,作为复杂形状操作的关键。这样的网络应该有一个形状内存转换。此外,它应该有其可塑性诱导在温度[可塑性温度(Tp)]足够高于形状记忆转换温度(T反式)完全分离弹性和可塑性。目标系统的设计原理在图1A中作了说明。该网络包含分子链段,可以选择来定制T反式可逆(可交换)可在相应T激活的共价债券p.图 1A中的左侧路线显示了其基于弹性的形状记忆行为。在相对较低的T温度下1 (T反式 lt; T1 lt; Tp),分子链流动性被激活,但可逆的共价键仍然处于休眠状态。在这种状态下,应用外部应力时的任何变形都应导致链式构象变化,在负载下冷却会导致变形形状的固定,由于形状变化的刺激性,在重新加热时可以恢复。同一网络,当在T变形p,预计将显示可塑性。如图 1A中的右侧路线所示,可逆共价键在T中激活p,应用外部力量,通过债券交换导致网络地形变化。变形的形状与任何热带变化无关:因此,形状变化是无法恢复或永久的。
需要考虑的一个关键因素是,典型的可塑性系统在温度太低,无法适应形状记忆过渡时诱导,或者过高,在T反复和长时间加热时不会因热降解而危及网络p.相比之下,T反式由于该领域的多年发展,SMP 通常可以在宽温范围内进行调谐:因此,需要有一个适当的Tp更多的是当前研究的重点。
选择交联聚(卡波拉酮)(PCL)系统作为模型网络,实现图1A中概述的热分明的弹性和可塑性。该网络由 PCL-硅酸盐 (PCLDA) 和四色交叉链接器 (图 1B)之间的激进启动反应合成。我们强调,这是罗德里格斯等人以前记录的SMP化学。(28) 当前研究的特别重点是在这种具有转化催化剂的网络中诱导热可塑性。对于这样的系统,PCL (55°C) 的熔化过渡是形状记忆弹性的基础,而中和有机基[1,5,7-triazabicyclo]4.4.0] dec-5-ene (TBD) 所催化的转速反应预计将有助于其可塑性。由于TBD具有促进硫烯-ene Michael添加反应的强大基础性,因此需要中和,以防止网络合成过程中的瞬时凝胶。正如后来在上下文中揭示的那样,中和的结核病对诱导可塑性非常有效。在这里,PCL的选择也至关重要,因为网络中酯联系的高密度可能会促进债券交换动力学降低Tp从典型的转化系统(21,23),一个有益的因素,以实现强大的累积可塑性效果。 我们在此回顾,PCL已广泛应用于设计SMP(28,29),但触发转化反应与催化剂诱导可塑性在SMP网络之前没有尝试过。
网络热诱导的可塑性首先通过等应应力应激放松进行研究。在这组实验中,每个样本被拉伸到100%应变。我们强调,这种应变值远远高于其他基于转电化的可塑性系统( 10%)(21, 23, 25) 。这一点尤其重要,因为我们对改变形状的兴趣,而不是在这些研究中的可塑性。然而,随着应变保持不变,压力放松(sigma;/sigma;0)被监测,sigma;和sigma;0分别表示瞬时应力和初始应力。Shape memory polymer network with thermally distinct elasticity and plasticity
Shape shifting in response to environmental changes is commonplace in nature. Its diversity and the associated functions are crucial for naturersquo;s survival (1). Stimuli-responsive shape-shifting polymers with similar intelligence have attracted tremendous attention owing to their vast technological potential (1). In particular, the drive for discovering ever more diverse shape-shifting behaviors that match or even exceed the complexity of natural systems appears to be a never-ending task (2–7). Shape memory polymer (SMP) is a unique class of such polymers for which externally programmed shape(s) can be temporarily fixed and later recovered on demand (8–10). Realization of its vast practical potential in a number of technological areas including deployable structures (for example, biomedical and aerospace) (11) and functionally tunable devices (12, 13) has stimulated intense interests in this area. Recent discovery of triple-shape (14), multiple-shape (15, 16), and reversible shape memory (17) beyond the classical dual-shape behavior has reshaped the landscape in this field, yet all shape memory behaviors share a common root in polymer elasticity, with the basis being the storage and release of entropic energy via chain conformation changes (8–10). An opposite behavior—polymer plasticity, which refers to reshaping polymers permanently without macroscopic melting—has recently gained attention (18–26). Mechanistically, this is achieved by covalent bond exchange in a polymer network, allowing its topography to be rearranged in response to an external force. That is, the shape change is not accompanied by chain conformation (or entropy) change and is thus permanent (that is, nonrecoverable). This particular property is fundamentally different from the commonly known reprocessing of thermoplastic polymers in its fluidic state (that is, plastic flow) in that the permanent reshaping can occur while the material maintains its dynamic crosslinking state. This difference has been proven quite beneficial because it leads to a new range of exciting possibilities including malleability of thermoset polymers (21–25), mechanopatterning of elastomers (19), and mechanical orientation of liquid crystalline elastomers (26).
The limitations of light-induced plasticity are largely inapplicable for thermally triggered systems. With this and other considerations in mind, we set out to design an SMP network with thermally distinct elasticity and plasticity, with particular attention to achieving a cumulative effect for the latter as the key for complex shape manipulation. Such a network should have a shape memory transition. In addition, it should have its plasticity induced at a temperature [plasticity temperature (Tp)] sufficiently above the shape memory transition temperature (Ttrans) to completely separate the elasticity and plasticity. The design principle of the target system is illustrated in Fig. 1A. The network contains molecular chain segments that can be chosen to tailor the Ttrans and reversible (exchangeable) covalent bonds that can be activated at a corresponding Tp. The left-hand route in Fig. 1A shows its elasticity-based shape memory behavior. At a relatively low temperature of T1 (Ttrans lt; T1 lt; Tp), the molecular chain mobility is activated but the reversible covalent bonds remain dormant. At this state, any deformation upon application of an external stress should lead to chain conformation change, cooling under the load results in fixation of the deformed shape, which can be recovered upon reheating because of the entropic nature of the shape change. The same network, when deformed at Tp, is expected to show plasticity. As shown in the right-hand route in Fig. 1A, reversible covalent bonds become activated at Tp, applying an external force which results in network topograp
资料编号:[271350],资料为PDF文档或Word文档,PDF文档可免费转换为Word