本科毕业设计(论文)
外文翻译
诊断包含有绝对值项的方程和不等式的学习困难
作者:Alper Ccedil;İLTAŞ 和Enver TATAR
国籍:美国
出处:国际在线教育科学杂志,2011,3(2),461-473
摘要:本研究的目的是诊断含有绝对值项的方程和不等式的学习困难,并对教师提出建议。该研究的样本是由来自四所不同高中的170名九年级学生组成的。研究数据由一个包含10个开放式问题的知识测试和与学生的访谈组成。根据获得的数据发现,学生在寻找这个方程和不等式的解集时,表现得好像没有绝对值一样,在形成正确的解集时遇到了困难,不能完全内化绝对值的概念。
关键词:人工智能,远程学习,分布式人工智能,基于web的教学,agent技术
一、介绍
如今,数学对许多学生来说成了一场噩梦,在那些被认为很难学的课程中,数学排在第一位。教育工作者在这方面负有重大责任。这些责任中最重要的一项是确定所要讲授的课程所遇到的学习困难,并针对这些确定的困难采取必要的预防措施。数学学习困难是指数量的特定在这一领域的不足(Durmuş,2007)。意识到学生在任何学科中所经历的困难是学习研究的重要的第一步,综合这些信息并将其与随后的研究联系起来,将被视为安排未来课程和形成教学方法的重要基础(Rasmussen, 1998)。
数学教育的目标当然是使学生在最高水平上实现学习。然而,事实上绝大多数学生都经历过困难,而其中一些实现学习被认为是生活的现实(Tall amp;Razali, 1993)。确定并消除这些经历过的困难;在学习过程中帮助和指导学生不仅是现代教育的要求,也是教师的职责之一(Ersoy amp; Ardahan, 2003)。因此,教师必须了解学生在学习数学过程中遇到的困难,以便在课堂上有效地开展学习活动,开发和设计学习环境(Yetkin, 2003)。
Tall(1993)对学生普遍存在学习困难的原因作了如下说明:
(一)对基本概念学习不充分;
(二)对口头问题的数学表述不充分;
(三)对代数、几何、三角的认识不充分。
通过对相关文献的梳理,发现教育工作者对教育进行了有益的探索。研究各种数学学习困难,要依据学生的经验从幼儿期开始到大学水平进行研究,将有助于消除这些困难。
Tatar和Dikici(2006)确定了学生在二进制运算中的学习困难及其性质。他们对74名大学生进行的这项研究的数据是由一个包含16个开放式问题和半结构化访谈的知识测试组成的。研究结果表明,学生在二元运算中不能很好地利用分配律,在概念层次上存在困难。此外,他们还观察到,与那些被给予规则的学生相比,学生们对表格的操作难度更小。在这项研究中,进行了识别的学习困难模运算的概念,Coşkun(2008)观察到学生:
(1)缺乏知识除法运算的基础;
(2)写除法算式符号表征的模运算符号中经历的困难;
(3)编写等价类经验严重困难;
(4)混淆任何等价类与mod的概念。
Ciltaş和Işık(2010)发现学习困难经历了序列单元学习小学数学三年级学生教学。本研究的数据是通过与学生进行的5个开放式问题和半结构化访谈获得的。研究结果表明,学生在求数列极限、确定单调性和有界性、求数列极限等方面存在一定的困难。此外,还发现学生混淆了序列极限的概念和函数极限的概念,混淆了序列极限的概念和级数极限的概念。
Baker(1996)的研究目的是揭示高中生和大学生在学习数学归纳法证明技术时所遇到的困难。研究结果显示,参与研究的学生在证明技巧的概念和操作上都有相当大的困难。据推测,学生们的缺乏数学知识是造成这些困难的一个重要原因。据推断,许多学生关注的是数学归纳法的程序方面,而不是其概念方面。Zachariades, Christou和Papageorgiou(2002)对38名数学系一年级学生进行了研究,旨在检查学生学习函数概念的困难。研究中使用了一个测试,由20个开放式问题组成,测试每个问题中给出的表述是否属于一个函数。第一部分给出了9个符号形式的对应,第二部分给出了11个对应图。在由象征题和图形题组成的两部分中,学生所经历的困难在统计上有显著差异。我们注意到,与用图形表示的表达式相比,学生们更容易识别用符号表示的表达式中的函数。
学生们最难学的数学科目之一是绝对值的概念。这一点在Tatar, Okur和 Tuna(2008)的难度指数研究中得到了清晰的观察,该研究的目的是检测中学数学中的学习困难。根据他的研究,他发现学生经历的困难是绝对值的概念, Başturk(2009)观察到的高中学生所犯的错误很多是关于绝对值的概念;他们犯的最常见的错误是他们解决问题的时候好像没有绝对值一样。Yenilmez和Avcu(2009)在他们的研究《检测学生在绝对值上所经历的困难》中,对八年级学生进行了一项由开放式问题组成的测试。通过研究发现,学生在含有绝对值的字母表达式和含有绝对值的方程问题的绝对值上存在困难。在这项研究中,对一年级学生进行研究数学教学,CiltaşIşık和冰斗(2010)准备知识测试,考察了绝对价值的程序和概念知识,他们对82名学生进行了测试。根据研究得到的数据,可以观察到,参与应用的学生绝大多数都不能对绝对值进行几何解释,他们在程序性测试中出现了对高中所学知识的记忆。
今天,很明显,阻碍学生学习的因素有很多,这些因素被分为社会学、心理学和认知学三个基本部分。本文研究的目的在于探讨中学生在包含有绝对值项的方程式与不等式的认知因素方面的学习困难,而非社会学与心理学的因素。
方法
该研究的样本由来自土耳其埃尔祖鲁姆四所不同高中的170名九年级志愿学生组成。
数据收集工具
“绝对价值知识测验(AVT)”是受益于Horak(1994)的研究而编写的,由10个开放式问题组成(见附录1)。对10名学生进行了半结构式访谈,以发现学习困难的细节。本申请的目的在面试开始时就已经向每位学生进行了说明,通过“explain”、“how?””和“为什么”。每个学生的采访时间为10-15分钟。
数据分析
数据的频率和百分比值是通过编码学生给AVT的答案为正确、错误和未回答而形成的。采用描述性分析方法,对学生的访谈进行转录,对学生的表情进行逐字转译。
结果和讨论
学生对AVT的回答的频率和百分比分布列于表1。
表1. 给AVT的答案的频率和百分比
问题 |
||||||||||
Q1 |
Q2 |
Q3 |
Q4 |
Q5 |
Q6 |
Q7 |
Q8 |
Q9 |
Q10 |
|
正确率 |
134 (79) |
81 (48) |
38 (22) |
50 (29) |
10 (6) |
19 (11) |
85 (50) |
30 (18) |
11 (7) |
32 (19) |
错误率 |
36 (21) |
72 (42) |
125 (74) |
115 (68) |
116 (68) |
66 (39) |
78 (46) |
130 (76) |
146 (85) |
100 (58) |
无回答 |
0 (0) |
17 (10) |
7 (4) |
5 (3) |
44 (26) |
85 (50) |
7 (4) |
10 (6) |
13 (8) |
38 (23) |
以下是学生对测试问题的回答以及与学生的几次访谈。
在AVT测试中,约有14.5%的学生正确回答了第3题和第9题;其中6%的人没有回答这些问题,79%的人给出了错误的答案。人们注意到,这些具有相同特征的问题的错误答案的比例相当高。当检查了这些错误的答案后,发现几乎所有的学生(大约90%)都回答了这些问题,如图1所示。此外,以下是对其中一名学生的采访。
图1. 学生对第三题和第九题的回答
下面是对给出错误答案的学生的采访。
面试官:你能告诉我如何解决这个问题“x值是多少,使方程|x-4|=2x 1”?
学生:这个表达式让绝对值既为负又为正。我发现一开始是正的,然后是负的。当我解决了这个问题,我发现X等于-5和1。
面试官:那么,你检查过你为这个问题找到的值的正确性了吗?
学生:我没有检查,因为我很确定。
面试官:你现在能检查一下吗?
学生:我们用1来代替x,它得证。用-5来代替x,它没有得证。
面试官:你知道为什么你发现的结果没有得到证实吗?
学生:没有。
面试官:你在另一个问题中采用了什么方法?
学生:我用类似的方法解出来,因为它的逻辑是一样的。
当AVT的第4题和第6题被检查后,可以观察到学生在|f(x)|=|g(x)|类型的问题上有明显的困难。人们发现他们在解决这类问题时犯了很多错误。大约39,5%的学生正确回答了这两个问题。当错误答案的学生的答案被检查时,有趣的答案被观察到。下面给出了与回答这两个问题的学生的访谈,如图2所示。
图2. 学生对第四题和第六题的回答
面试官:你能告诉我你是怎么解决第四个问题的吗?
学生:首先,我令x 2 =-x-1。然后,我把它等价于负的那个,然后我解出了它。
面试官:第二个表达式的否定形式是-x-1吗?
学生:是的。
面试官:在第6个问题中,你也做了同样的事情。那么,你是说变量的符号(也就是x)改变了,但是常数的符号没有改变?
学生:是的,我们学过。
面试官:那么,你是如何解释你的研究结果的呢?
学生:因为在第四个问题中-3不可能等于零,所以解是一个空集。另一方面,我发现它是-3/2。我在那边的集合里写错了。你稍后会要求这些作为解集;我把它们写成解集。
面试官:你们都说解集是空集,但你们写的是-3/2。你对此有什么看法?
学生:我不知道。我发现是这样的,我就写了下来。
面试官:如果我们认为空集结
剩余内容已隐藏,支付完成后下载完整资料
Diagnosing Learning Difficulties Related to the Equation and Inequality that Contain Terms with Absolute Value
Alper Ccedil;İLTAŞ and Enver TATAR
Abstract
The aim of this study is to diagnose the learning difficulties about the equation and inequality that contain terms with absolute value and to make suggestions for the teachers in this respect. The sample of the research is composed of 170 ninth grade students enrolled in four different high schools. Data of the research is composed of a knowledge test that contains 10 open-ended questions and interviews made with the students. According to the acquired data, it has been detected that the students experienced difficulties in forming a correct solution set since they acted as if there were no absolute value while finding the solution set of this equation and inequality, and could not fully internalized the concept of absolute value.
Key Words: Artificial intelligence, distance learning, distributed artificially intelligent, web based instruction, agent technology
Introduction
Nowadays, mathematics becomes a nightmare for many students and comes first among the lessons that are considered difficult to learn. Educators have a great responsibility in this respect. The most important one of these responsibilities is to identify the learning difficulties which are experienced about the lesson to be given and to take necessary precautions in view of these identified difficulties. Although covering a very large scope,learning difficulty in mathematics means a number of inadequacies particular to this field(Durmuş, 2007).
Awareness of the difficulties experienced by students in any subject is an important first step for the studies conducted on learning. Synthesizing and correlating such information with the subsequent studies will be regarded as a significant basis in arranging the future curricula and in forming the teaching method (Rasmussen, 1998).
The objective of mathematics education is surely to make students actualize learning in the highest level. However, the fact that the vast majority of the students experience
difficulties while a few of them actualize learning is considered a reality of life (Tall amp;Razali, 1993). To identify and eliminate these experienced difficulties; to assist and guide the students during learning process is not only a requirement of modern education but also among the responsibilities of teachers (Ersoy amp; Ardahan, 2003). Therefore, teachers must be aware of the difficulties that are experienced by students in learning mathematics in order to perform learning activities effectively in their lessons and develop and design the learning environments (Yetkin, 2003).
Tall (1993) stated the reasons for the learning difficulties of students generally as follows:
(i) learning the basic concepts inadequately, (ii) inadequacy in formulizing verbal problems mathematically, (iii) insufficiency in algebraic, geometric and trigonometric
skills.
On scrutinizing the related literature, it has been found out that educators carried out
researches on varied learning difficulties students experience in mathematics beginning from the preschool period up to university level and researches that would help eliminate these difficulties (Coşkun, 2008; Durmuş, 2007; Dikici amp; İşleyen, 2004; Erbaş, Ccedil;etinkaya amp; Ersoy 2009; Harel, 1989; (Keşan, Kaya and Guuml;vercin, 2010; Ouml;zmantar, Bingouml;lbali amp; Akkoccedil;,2008; Rasmussen, 1998; Tatar, 2006; Tall amp; Razali, 1993; Tall, 1993; Ural, 2006).
Tatar and Dikici (2006) determined the learning difficulties of students in binary operation and its properties. Data of this study that they performed on 74 undergraduates was composed of a knowledge test that contained 16 open-ended questions and semistructured interviews. In view of the study results, it was revealed that the students could not make use of the distributive property in binary operations and experienced difficulty in conceptual level. Moreover, it was observed that the students experienced less difficulty in operations with the table compared to those given with their rules. In the study which was conducted to identify the learning difficulties about the concept of modular arithmetic, Coşkun (2008) observed that students:
(i) lack knowledge about divisionalgorithm that forms the basis of modular arithmetic,(ii) experience difficulties in writing the symbolic representation of the division algorithm with modular arithmetic notation,(iii) experience serious difficulties in writing equivalence classes,(iv) confuse any equivalence class with the concept of mod. Ccedil;iltaş and Işık (2010) found out the learning difficulties experienced in sequences unit by third-year students who study elementary school mathematics teaching. Data of the study was obtained via 5 open-ended questions and semi-structured interviews made with the students. As a result of the study, it was specified that the students experienced difficulty in finding the limit of a sequence, determining the monotony and boundedness, and finding the limit of a sequence.Furthermore, it was discovered that the students confuse the concept of limit in sequences with that of functions and also confuse the concept of sequence with series.
Baker (1996) conducted his research with the purpose of revealing the difficulties experienced by high school and university students while learning mathematical induction proof technique. As a result of the study, it was brought to light that the students who participated in the research had experienced significant difficulties both conceptually and operationally about proof techniques. It was surmised that studentsrsquo; lack of mathematical knowledge played an important role in these difficulties. It was deduced that many students focused on the procedural aspect o
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[268401],资料为PDF文档或Word文档,PDF文档可免费转换为Word
课题毕业论文、文献综述、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。