所有速度范围的狭义相对论 和
You-Shan Dai
摘要: 在通常的狭义相对论,“慢子”没有零静止质量和光必须分别具有零静止质量,但超光速“快子”应该有虚静止质量,虽然轻,“快子”其实都无权以任何洛伦兹变换没有休息帧。在本文中,我们解决这些矛盾通过重建一个新的狭义相对论所有速度范围是有效的两个粒子或没有休息的帧。我们证明了它有休息帧颗粒,基于绝对空间和时间的伽利略变换是唯一的线性时空变换,允许无限的速度粒子运动。对于任何非伽利略线性变换,上限速度是必需的,没有任何假设。另一方面,颗粒不休息帧受到较低速度的约束,并没有静止质量可以定义。那么3箱子必须区分。首先,对于其余的框架和非零静止质量的粒子,我们提出相对论质速关系推导小说(为),和能量 - 动量关系由下式给出,用是在无限的速度有限的势头。第三,为恒速颗粒,我们称其为“康斯顿 ”,没有休息框架也静止质量可以被定义,但它的动量和能量仍然可以通过阅读,和能量 - 动量关系成为。所以数量对于所有的粒子在转型仍然不变惯性帧之间,其独特的修复广义洛伦兹变换形式(为),在的情况下的值应通过实验来测量在情况下,通常的洛伦兹变换被回收和光的恒定速度导出。我们的工作证明相对论认为,无论有或没有休息帧颗粒本质和一致,和有的存在与否,因此,不需要的光的恒定速度的前提下,我们已经开发出一种新的特殊相对论中更一般地,它可以是适用于颗粒与其余的帧或者没有休息帧。
关键词: 狭义相对论; 相对恒定; 广义洛仑兹变换; 对光速不变原理; 真正的大规模“超光速粒子”.
据众所周知,爱因斯坦提出的狭义相对论基于两个基本的假定(或相对的简称):光速不变和相对论的爱因斯坦原则。光速不变,从空间和时间的洛伦兹变换推导,奠定了相对论运动学[3]的基础。相对论的爱因斯坦原则规定,所有物理定律采取协变形式在所有惯性系,其中出没有特定的帧是身体特殊。相对论质速关系和爱因斯坦的流行质能方程遵循自然从这些的假定。
洛伦兹变换的速度,光的速度参数,意味着所有的粒子(对象)的速度不能超过限速。在传统的配方中,一个速度极限的存在被认为是光速不变的结果。已经提出的,而不是假设光速不变的是,人们假定的上限是否存在速度[6,7,8]。然而,有隐含的假设是有一定的颗粒物质总是在行进的速度极限(如光子),所有以前的配方依赖[9,10]。在本文中,我们采取了一种新的途径。在第一节中,我们证明了该定义自己的休息帧颗粒,伽利略相对性与绝对时间的概念是唯一一个可以容纳的空间和时间的线性变换,但允许无限的粒子速度。这意味着,对于任何非伽利略相对性,出现限速为重粒子自然无需额外的假设和时空的知识。虽然根据定义粒子速度可任意接近限制速度,它不是先验任何特定的种类,饱和结合。因此,如果没有其他假设,相对论运动学并不确定非伽利略变换的明确的形式。
相对论质速关系,从这些相对论质能关系可以导出,是相对论动力学的基本方程。质速关系的传统推导利用洛仑兹变换[11,12],诱人的一个结论是,必须建立在时空的洛仑兹变换规则。限制大规模与其余的帧颗粒,在第2节中,我们提出仅仅相对论动力学的框架,其不必要的光的恒定速度或任何明确的空间 - 时间变换规则中的质量速度和质能关系的新推导。然后,我们确定了广义洛仑兹变换,这对于时空对应的变换。在我们的新方法,恒相对论取光的速度的地方和对于大规模的颗粒,所以质速和质能以及广义洛伦兹变换并非由光速来确定。虽然价值对应原则上通过实验来确定,古典伽利略变换被回收在极限。粒子物种没有定义休息帧,我们表明用作下速度开往“快子”和“超光速粒子”的质量必须采取一个真正的参数。
我们讨论了能量 - 动量关系在第3,节粒子的相对论动量和能量分别是,。相应的能量 - 动量关系可以通过从任一“tardyon”或“快子”的质速关系消除来获得。数值是示出根据参考帧之间提升是不变,并且在广义洛仑兹变换然后可确定。 没有引入光速不变的假设下,我们提出了狭义相对论的新配方比传统配方比较一般,这适用于颗粒休息帧和颗粒不休息帧。
1. 特殊相对论运动学
线性时空变换
考虑一个惯性系沿着方向运动在相对速度相对于另一惯性系。时空点具有坐标在框架和坐标在框架,如描绘于图1中。
空间和时间坐标的变换应该是线性的,从而使该逆变换也采用相同的形式。最普遍,我们可以写
(1.1)
考虑原产地的运动在框架我们有;同样为原点在框架:,,,,我们有。我们有相对速度的两个未知功能,其中来讲,我们投式(1.1)到表单。
(1.2)
位置和速度应改变的迹象下的空间反射,将第一和第四方程成,由此我们可以推断:
,
(1.3)
另外,框架移动时的速度相对于框架,在它们之间的空间和时间转化为式的倒数。(1.2)
(1.4)
在琐碎的情况下,即两个惯性系重合,我们必须有,从中我们推断
,
(1.5)
当方程(1.2)和等式(1.4)相结合,我们得到这意味着
(1.6)
因此,我们已经看到,功能和是相关的,且只有一个独立功能需要被指定为唯一确定的空间 - 时间变换。此外,通过区分方程(1.2),我们发现
(1.7)
变换为两帧观察可以得出速度的
(1.8)
这仍然是部分未知的,因为或是尚未确定。
的情况下,(1.6)就意味着,给出的上限重合,我们有。这无非是伽利略相对性,与绝对时间独立不同的帧的概念。
,
(1.9)
速度变换非伽利略情况
在本节中,我们讨论的非伽利略情况或,这是更相关的真实世界。我们不会对不感兴趣的琐碎纠缠的情况下。我们先从变换速度和学习运动学特性揭示。假定一个粒子沿着方向移动与速度,如在帧观察。考虑第二帧以速度移动相对于框架沿方向。对于紧凑性,我们将从现在开始降标这表示速度的分量。速度读取改造成:
剩余内容已隐藏,支付完成后下载完整资料
Special Relativity for All Speed Range and
You-Shan Dai
Zhejiang University City College, Hangzhou, Zhejiang, 310015, China
Abstract: In usual Special Relativity,“tardyon”has no-zero rest mass and light must has zero rest mass respectively,but superluminal“tachyon”should has imaginary rest mass,although light and“tachyon”actually has no rest frames under any Lorentz transformation. In this paper, we resolve these contradictions by reconstruct a new Special Relativity theory for all speed range which is valid for both particles with or without rest frames. We prove that for particles which have rest frames, the Galilean transformation based on absolute space and time is the only linear space-time transformation that allows for infinite speed for particle motion. For any non-Galilean linear transformation, an upper bound for speed is required without any assumption. On the other hand, particles without rest frames are subject to lower speed bound and no rest mass can be defined. Then three cases must be distinguished. First, for particles with rest frames and non-zero rest mass, we present novel derivations of the relativistic mass-velocity relation ,(for ), and mass-energy relation in the framework of relativistic dynamics, based solely on the principle of relativity and basic conservations of momentum and energy, the energy-momentum relation reads . Here emerging as a universal constant of Nature appears naturally as required by relativity, we call as the Relativity Constant and itrsquo;s appear does not rely on the assumption of constant speed of light. Secondly, for “tachyon” which have no rest frame nor rest mass, the momentum and energy also read ,, but the real mass-velocity relation is replaced by , (for), and the energy-momentum relation is given by , with being the finite momentum at the infinite speed. Thirdly, for constant-speed particles with, we call it as “conston”, no rest frame nor rest mass can be defined, but its momentum and energy can still read by , , and energy-momentum relation becomes . So the quantity for all particles remains invariant under transformation between inertia frames, which uniquely fixes the form of the generalized Lorentz transformation, (for ). The value of should be measured by experiments, for the case of , the usual Lorentz transform is recovered and a constant speed of light is derived. Our work proves that relativity holds intrinsically and consistently, regardless of particles with or without rest frames, and having existed or not. Therefore, not required the assumption of constant speed of light, we have developed a new Special Relativity theory in a more general ground, which can be applies to both particles with rest framesor without rest frames.
Keywords: Special Relativity; Relativity Constant; generalized Lorentz transformation; principle of constant speed of light; real mass “tachyon”
It has been well known that Einstein formulated the Special Relativity (or relativity for short) based on two fundamental postulations: constant speed of light and the Einstein principle of relativity[1, 2]. Constant speed of light, from which the Lorentz transformation of space and time is derived, lays the very foundation of relativistic kinematics[3]. The Einstein principle of relativity dictates that all physics laws take covariant forms in all inertial frames, out of which no particular frame is physically special. The relativistic mass-velocity relation and Einsteinrsquo;s popular mass-energy equation follow naturally from those postulations[4, 5].
The Lorentz transformation for velocity, parameterized by the speed of light, implies that velocity of all particles (objects) cannot exceed a speed limit. In the traditional formulation, the existence of a speed limit is regarded as a consequence of constant speed of light. It has been proposed that instead of assuming constant speed of light, one assumes the existence of an upper bound for speed[6, 7, 8]. Still, one implicitly assumes that there is certain particle species that always travels at the speed limit (e.g. the photon), which all previous formulations rely on[9, 10]. In this paper, we take a novel route. In Section 1, we prove that for particles that define their own rest frames, the Galilean relativity with the notion of absolute time is the only one that accommodates a linear transformation of space and time but allows infinite particle velocity. It implies that for any non-Galilean relativity, speed limit for massive particles arise naturally without additional assumptions and knowledge of space-time. Although by definition particle velocity can be arbitrarily close to the speed limit, it is not a priori that any particular species saturates the bound. Therefore, without other assumptions, relativistic kinematics does not determine the explicit form of non-Galilean transformations.
The relativistic mass-velocity relation, from which the relativistic mass-energy relation can be derived, is a basic equation of the relativistic dynamics. The traditional derivations of the mass-velocity relation utilize the Lorentz transformation [11, 12], tempting one to conclude that it must be built on the Lorentz transformation rule of the space-time. Restricted to massive particles with rest frames, in Section 2, we present a new derivation of the mass-velocity and mass-energy relations solely within the framework of relativistic dynamics, which does not necessitate a constant speed of light or any explicit space-time transforming rule. We then determine the generalized Lorentz transformations, which is the corresponding transformation for space-time. In our new approach, the Constant of Relativity takes the place of the speed of l
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[287153],资料为PDF文档或Word文档,PDF文档可免费转换为Word
课题毕业论文、文献综述、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。
您可能感兴趣的文章
- 变压器和超导磁体中的磁场和电磁力分析外文翻译资料
- 单模光纤中布里渊动态光栅反射谱的特性外文翻译资料
- 肽纳米管的结构转变外文翻译资料
- 大面积、无转移、抗氧化合成六方氮化硼薄膜及其与和的异质结构外文翻译资料
- 在金属触点在设计高性能单层n型WSe2场效应晶体管中的作用外文翻译资料
- 具有2D/2D欧姆接触器的高性能WSe2光电晶体管外文翻译资料
- 奇偶时间对称光晶格中具有竞争性的三阶和五阶非线性的光孤子的稳定性外文翻译资料
- 非局域非线性介质中艾里束脱落的孤子和呼吸艾里孤子的束缚态外文翻译资料
- 高阶衍射pt对称光晶格中的隙孤子外文翻译资料
- 通过浸渍提拉法制备的连续且高度有序的有机半导体薄膜:弯月面角的关键作用外文翻译资料