一种基于生态建模方法(EMM)的湖泊
生态系统健康评价方法及其应用
原文作者:徐福留,陶澍,曹军等 单位: 中国北京大学环境科学学院
摘要:生态系统健康是一个为实现环境管理而提出的新概念,它定义的索引和评估方法仍在不断完善中。本文中,主要提出了一种基于生态建模方法(EMM)的湖泊生态系统健康评价方法。该EMM方法是这样的:(1)分析湖泊生态系统,确定湖泊生态模型的结构性和复杂性;(2)通过设计概念图,建立模型方程模型,估计模型参数,并结合生态指标建构生态卫生指标;(3)比较模拟重要的状态变量观测值和误差率(即模型校准),以便评价该模型对于湖泊生态系统健康评价的适用性;(4)在开发模式的基础上计算生态系统健康指标;(5)根据生态系统健康的价值评估湖泊生态系统健康指标。这种EMM应用,是针对中国富营养化湖(巢湖)在生态系统健康评价的个案研究,研究时间在1987年4月和1988年3月之间。健康状态从差到好的相对顺序确定如下:1987年8月-10月;1987年4月-5月;1987年6月-7月;1987年11月-12月;1988年1月至3月。结果比较分析,当年绝不逊色于巢湖现今的实际现状。也因此,这种EMM方法是比较适用于评估湖泊(巢湖)生态系统的健康。
关键词:生态模型,生态系统健康评价,生态指标,巢湖
引言
“健康”的概念,起源于药。它原本是用于评估人身体的状态,慢慢延伸到描述动物、植物个体和群体的生命力。1941年,Leopold扩大了“健康”的概念,又增入了识别“土地疾病”的指标。在20世纪60年代,这个概念在环境医学中被使用,用以描述环境污染对人体健康的影响程度。到了20世纪80年代中期,累积的证据表明,人类支配的生态系统已经失去了平衡,“健康”的概念又被进一步扩展到了区域层面(包括生态系统,集水区,流域和景观)。这种推广“健康”的理念方式,通过生态系统水平评估为整合社会提供了许多新的机会,自然和健康科学(Barrett amp; Rosenberg,1981;Rapport,1989;Rapport et al,1998a,b)。自20世纪80年代,在文献中,“生态系统健康”这个词出现的频率越来越高。与此同时,许多研究者,包括生态学家,经济学家,哲学家和管理人员都试图定义和发展更有意义和操作性的“生态系统健康”的概念(e.g. Karr et al.,1986;Schaeffer et al,1988;Rapport, 1989;Kay,1991;Norton,1992;Costanza,1992;Haskell et al.,1992;Page,1992;Ulanowicz, 1992)。1992年,Costanza综合前人总结出“生态系统健康”概念的关键要素如下:(1)处于动态平衡;(2)没有疾病;(3)具备多样性或复杂性;(4)存在稳定性或复原力;(5)具有活力或演化发展的范围;(6)生态系统各部分处于平衡。这定义的要素不仅包括生态系统的生物物理方面,也包括社会经济方面。从社会角度来看,自然和健康科学,生态系统健康探索了人类活动之间的关系,生态的转型,人类健康以及公共政策(Rapport et al.,1998a,b)。生态系统的健康非常依赖于各种生态服务水平的维护(例如供应饮用水,肥沃的土壤,清新的空气,生物多样性,能源的传输和养分的循环)(Cairns amp; Pratt,1995;Cairns,1997;Costanza et al.,1997; Daily,1997;Rapport et al.,1998b)。生态系统的健康着眼于保护生态的完整性,以及自然系统是否能够调节人类活动在生态系统产生的重大影响。它也涉及到系统的转型以及这样的转型对于经济和人类健康的影响,社会制度的维护(Rapport,1999)。生态系统健康是在培育一个新的综合科学中关于环境管理的一个实施策略(Costanza, 1992)。这就要求有效地整合生态学和社会与健康科学中的生态理念(Wilson, 1995)。那么,生态学家们就需要深度调查生态系统健康的生物物理间的相互作用,包括社会价值和人类健康(Cairns amp; Pratt,1995;Cairns,1997;Costanza et al.,1997;Daily,1997;Rapport et al.,1998b)。
为了定量评估生态系统健康,包括生态系统健康中已经提出的不同方面的各项指标。这些指标范围从单一品种的指标(e.g. Kerr amp; Dickey,1984),到物种的复合材料(e.g. Karr et al.,1986; Karr,1991),到对生物多样性的措施,以及生态系统的结构,功能和组织制度层面的措施(e.g. Hannon,1985;Ulanowicz,1986;Schindler,1990;Costanza,1992;Joslash;rgensen,1995a,b;Xu et al.,1999a),甚至到其他非常广泛的措施,几乎超越了包括一些人的社会经济因素的生物物理领域(e.g. Rapport et al.,1985;Rapport,1992)。生态系统健康评价要求分析生态系统和景观在结构和功能改变的情况下对人的压力,以及生态系统服务功能和服务水平,并做出一些影响其变化的社会对策(Daily,1997; Rapport et al.,1998b;Rapport, 1999)。事实上,有效的评价正需要这些关键要素的验证和修正。在评估生态系统健康过程中涉及生态,经济和人的领域,这就需要人类价值观与生物物理过程的融合,但迄今为止,这种整合受到传统科学的限制(Cairns amp; Pratt,1995;Cairns,1997;Costanza et al.,1997;Daily,1997;Rapport et al.,1998b)。
该领域为推进人类活动,区域和全球环境变化之间的联系做了衔接,并降低了生态服务水平,并对人类健康,经济发展和社会福利提升产生了一定的影响。越来越高的对这些相互影响的认知水平提醒着我们需要将生态,社会和健康科学进行合理地整合。(Daily,1997; Rapport et al.,1998b;Rapport,1999)。在过去的几年中,国家和国际环保计划已经开始提出生态系统健康的指标。虽然一开始主要是从生物物理的角度来看,但逐渐加入了集社会,经济和人类健康方面的考虑。其中在涉及到集体项目工作这方面,领先做出成绩的是加拿大和美国政府,他们评估出了大湖的生态系统健康状态(Shear,1996)。这种战略包括应力指标的发展(特别是来自农业,工业和人类住区的污染)和相应的生态系统调节能力。而应对的措施,包括来自物理,生物和水生群落的化学环境,以及相关的经济发展趋势和对人类健康的风险。该项目受到加拿大国际发展研究中心(IDRC)的大力支持,侧重于生态变化的关系,而这种变化对经济发展,农村社区发展以及人类可持续发展都有一定的影响(Rapport et al.,1998b)。
几个关于对生态系统健康评价的程序已经在很多文献中提及和讨论。其中1988年Schaeffer等人提出了7准则。在另一方面,1992年Haskell等人提出了以下方式:(1)识别症状;(2)识别和测量生命体征;(3)提出临时诊断;(4)进行测试,以验证诊断;(5)作出预测;(6)采取措施治疗。1995年,Joslash;rgensen根据生态指标提出了进行实用生态系统健康评估的程序,如下(包括放射本能,结构的放射本能和缓冲容量):(1)建立就生态系统相关的健康问题;(2)评估这些问题中,动态变化的数据;(3)创建生态系统的概念图,其中包括在各方面组成中重要的质量变动,重复步骤(2);(4)使用常规方法,建立动态模型(要得到稳定的状态模型,应使用足够的数据)(Joslash;rgensen, 1994);(5)使用该模型计算放射本能,结构的放射本能以及缓冲能力(如果该模型是动态的,它将有可能确定季节变化而引起的放射本能,结构的放射本能以及缓冲能力变化);(6)通过放射本能,结构的放射本能以及缓冲能力来评估生态系统的健康。
本文的目标是:(1)提出一个基于建模方法(EMM)的湖泊生态系统健康评价方法;(2)运用EMM来评估一个浅水富营养化中国湖(巢湖);(3)比较实际获得的评估结果和之前的评定数据(Xu,1996)。
满意?
图1.生态建模法(EMM)的程序湖泊生态健康评估
剩余内容已隐藏,支付完成后下载完整资料
A method for lake ecosystem health assessment: an Ecological Modeling Method (EMM) and its application
Fu-Liu Xu, Richard W. Dawson, Shu Tao, Jun Cao amp; Ben-Gang Li
MOE Laboratory for Earth Surface Processes and Dept. of Urban amp; Environmental Sciences, Peking University, Beijing 100871, China
Tel/Fax: (86)-10-62751938. E-mail: xufl@urban.pku.edu.cn
Abstract:Ecosystem health is a newly proposed concept that sets new goals for environmental management. Its definition, indexing and assessment methods are still being perfected. An Ecological Modeling Method (EMM) for lake ecosystem health assessment is proposed in this paper. The EMMrsquo;s procedures are: (1) to analyze the ecosystem structure of a lake in order to determine the structure and complexity of the lakersquo;s ecological model; (2) to develop a model having ecological health indicators, by designing a conceptual diagram, establishing model equations, estimating model parameters and being integrated with ecological indicators; (3) to compare the simulated and observed values of important state variables and process rates (i.e. model calibration) in order to evaluate the applicability of the model to lake ecosystem health assessment; (4) to calculate ecosystem health indicators based on the developed model; and (5) to assess lake ecosystem health according to the values of the ecosystem health indicators. The EMM was applied, as a case study, to the ecosystem health assessment of a eutrophic Chinese lake (Lake Chao) between April 1987 and March 1988. A relative order of health states from poor to good was determined as follows: August–October 1987 gt; April–May 1987 gt; June–July 1987 gt; November–December 1987 gt; January–March 1988. These results compared quite favourably with the actual current conditions at Lake Chao. The EMM method, therefore, was suitable in assessing lake ecosystem health at Lake Chao.
Key words: ecological modeling, ecosystem health assessment, ecological indicator, Lake Chao
Introduction
The notion of lsquo;healthrsquo; originates from the field of medicine. Its original focus as an assessment of the condition of the human body has since been expanded to include both plants and animals in describing the vitality of individuals and/or their populations. Leopold (1941) expanded the concept of health to include land by identifying indicators of lsquo;land sicknessrsquo;. During the 1960s, this notion was used in environmental medicine to describe the increasing influence of environmental pollution on human health. By the middle 1980s, in response to accumulating evidence that human-dominated ecosystems have become highly dysfunctional, the notion of lsquo;healthrsquo; was extended further to encompass regional levels (ecosystems, catchment areas, basins and landscapes). The extension of the lsquo;healthrsquo; concept to ecosystem level assessments provides a number of new opportunities to integrate the social, natural and health sciences (Barrett amp; Rosenberg, 1981; Rapport, 1989; Rapport et al., 1998a,b). Since the 1980s, the term ecosystem health has been found with increasing frequency in the literature. Many researchers, including ecologists, economists, philosophers and managers have attempted to define and develop a more meaningful and operational definition (e.g. Karr et al., 1986; Schaeffer et al., 1988; Rapport, 1989; Kay, 1991; Norton, 1992; Costanza, 1992; Haskell et al., 1992; Page, 1992; Ulanowicz, 1992). Costanza (1992) best summarized the key elements behind the conceptual definition of ecosystem health as follows: (1) homeostasis; (2) absence of disease, (3) diversity or complexity; (4) stability or resilience; (5) vigor or scopefor growth; and (6) balance between system components. These definitional elements cover not only the biophysical aspects of ecosystems, but the socioeconomic aspects as well. In drawing from the social, natural and health sciences, ecosystem health explores the relationships between human activity, ecological transformation, human health and public policy (Rapport et al., 1998a,b). The health of an ecosystem depends heavily upon the maintenance of various ecological service levels (e.g. supply of potable water, soil fertility, clean air, biodiversity, energy transfers and nutrient cycling) (Cairns amp; Pratt, 1995; Cairns, 1997; Costanza et al., 1997; Daily, 1997; Rapport et al., 1998b). Ecosystem health focuses on the maintenance of ecological integrity, given the impacts of human activity on natural systems; and how these systems withstand change. It also considers the transformation of systems and the implications such transformations have on economic opportunity, the maintenance of social systems, and on human health in general (Rapport, 1999). Ecosystem health is as much about implementing strategies in environmental management as it is about fostering a new integrative science (Costanza, 1992). The field requires the effective integration of ecology and ecological concepts with the social and health sciences (Wilson, 1995). Ecosystem health requires ecologists to extend their inquiries beyond the biophysical interactions to include consideration of social value and human health (Cairns amp; Pratt, 1995; Cairns, 1997; Costanza et al., 1997; Daily,1997;Rapport et al., 1998b).
In order to assess quantitatively ecosystem health, various indicators covering different aspects of ecosystem health have been suggested. These indicators range from single species indicators (e.g. Kerr amp; Dickey, 1984) to composites of species (e.g. Karr et al.,1986; Karr, 1991) to measures of biodiversity, to system level measures of ecosystem structure, function and organization (e.g. Hannon, 1985; Ulanowicz, 1986; Schindler, 1990; Costanza, 1992; Joslash;rgensen,1995a,b; Xu et al., 1999a) to very broad measures
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[286912],资料为PDF文档或Word文档,PDF文档可免费转换为Word
课题毕业论文、文献综述、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。
您可能感兴趣的文章
- 变压器和超导磁体中的磁场和电磁力分析外文翻译资料
- 单模光纤中布里渊动态光栅反射谱的特性外文翻译资料
- 肽纳米管的结构转变外文翻译资料
- 大面积、无转移、抗氧化合成六方氮化硼薄膜及其与和的异质结构外文翻译资料
- 在金属触点在设计高性能单层n型WSe2场效应晶体管中的作用外文翻译资料
- 具有2D/2D欧姆接触器的高性能WSe2光电晶体管外文翻译资料
- 奇偶时间对称光晶格中具有竞争性的三阶和五阶非线性的光孤子的稳定性外文翻译资料
- 非局域非线性介质中艾里束脱落的孤子和呼吸艾里孤子的束缚态外文翻译资料
- 高阶衍射pt对称光晶格中的隙孤子外文翻译资料
- 通过浸渍提拉法制备的连续且高度有序的有机半导体薄膜:弯月面角的关键作用外文翻译资料